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In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were
the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize
the historical context and the impact of Shapley’s contribution.

game theory | stochastic games

The 1950s were the decade in which game
theory was shaped. After von Neumann and
Morgenstern’s Theory of Games and Economic
Behavior (1) was published in 1944, a group of
young and bright researchers started working
on game theory, each of whom published pa-
pers that opened new areas. In 1950, John
Nash published two papers, one on the con-
cept of Nash equilibrium (2) and the other on
the bargaining problem (3). In 1953, Lloyd
Shapley published two papers, one on stochas-
tic games (4) and the other on the Shapley
value for coalitional games (5). In 1957,
Harold Kuhn (6) provided a formulation
for extensive-form games, and Duncan Luce
and Howard Raiffa published their book
Games and Decisions: Introduction and Critical
Survey (7). These researchers and others, like
Kenneth Arrow, Richard Bellman, and David
Blackwell, interacted, worked and played to-
gether, exchanged ideas, and developed the
theory of dynamic games as we know it today.

While in graduate school at Princeton,
Shapley befriended Martin Shubik and John
Nash. The former became a well-known
economist, and the latter defined the concept
of Nash equilibrium, the most prevalent
solution concept in game theory and eco-
nomic theory to date. In 2013, Shapley was
awarded the Nobel Prize in economics, 8 y
after Nash was awarded the prize.

Stochastic games model dynamic interactions
in which the environment changes in response
to players” behavior. In Shapley’s words, “In a
stochastic game the play proceeds by steps
from position to position, according to tran-
sition probabilities controlled jointly by the
two players” (4).

A stochastic game is played by a set of
players. In each stage of the game, the play is
in a given state (or position, in Shapley’s lan-
guage), taken from a set of states, and every
player chooses an action from a set of
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available actions. The collection of actions
that the players choose, together with the
current state, determine the stage payoff that
each player receives, as well as a probability
distribution according to which the new state
that the play will visit.

Stochastic games extend the model of stra-
tegic-form games, which is attributable to von
Neumann (8), to dynamic situations in which
the environment changes in response to the
players’ choices. They also extend the model
of Markov decision problems, which was de-
veloped by several researchers at the RAND
Corporation in 1949-1952, to competitive sit-
uations with more than one decision maker.

The complexity of stochastic games stems
from the fact that the choices made by the
players have two, sometimes contradictory,
effects. First, together with the current state,
the players” actions determine the immediate
payoff that each player receives. Second, the
current state and the players’ actions influence
the choice of the new state, which determines
the potential of future payoffs. In particular,
when choosing his actions, each player has to
balance these forces, a decision that may often
be difficult. Although this dichotomy is also
present in one-player sequential decision
problems, the presence of additional players
who maximize their own goals adds com-
plexity to the analysis of the situation.

Shapley’s paper in PNAS introduced the
model of stochastic games with positive
stopping probabilities, assuming a finite set
of states, and a finite set of possible actions
for each player in each state. In this model,
the current state and the players’ actions
determine the probability that the game will
terminate once the current stage is over. His
paper deals with two-player zero-sum games,
so that the gain of player 1 is always equal to
the loss of player 2.

A history of length ¢ in a stochastic game is
the sequence of states that the game visited in

the first ¢ stages, as well as the actions that the
players played in the first t —1 stages. A
strategy of a player is a prescription how
to play the game; that is, a function that assigns
to every finite history an action to play should
that history occur. A behavior strategy of a
player is a function that assigns to every finite
history a lottery over the set of available actions.

A zero-sum game is defined to have a
“value” v if (i) player 1 has a strategy (which
is then said to be “optimal”), which ensures
that his expected overall payoff over time
does not fall below v, no matter what is the
strategy followed by player 2, and (ii) if the
symmetric property holds when exchanging
the roles of the two players. Shapley proved
the existence of a value. Because the param-
eters that define the game are independent
of time, the situation that the players face if
today the play is in a certain state is the same
situation they would face tomorrow if to-
morrow the play is in that state. In particular,
one expects to have optimal strategies that
are stationary Markov, that is, they depend
only on the current state of the game. Shapley
proved that indeed such optimal strategies
exist, and characterized the value as the
unique fixed point of a nonlinear functional
operator—a two-player version of the dynamic
programming principle.

The existence of stationary Markov opti-
mal strategies implies that, to play well, a
player needs to know only the current state.
In particular, the value of the game does not
change if players receive partial information
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on each other’s actions, and/or if they forget
previously visited states.

In the following paragraphs, we briefly
describe some of the directions in which the
theory has developed following Shapley’s
groundbreaking paper.

Shapley’s model is equivalent to one in which
players discount their future payoffs accord-
ing to a discount factor that depends on the
current state and on the players” actions. The
game is called “discounted” if all stopping
probabilities equal the same constant, and one
minus this constant is called the “discount
factor.” Models of discounted stochastic games
are prevalent in economics, where the discount
factor has a clear economic interpretation.

A large literature followed, relaxing both the
zero-sum and the finiteness assumptions of
Shapley’s paper. In non-zero-sum games, a
collection of strategies, one for each player, is a
“(Nash) equilibrium” if no player can profit by
deviating from his strategy, assuming all other
players follow their prescribed strategies.

The stationary structure leads one to expect
that equilibria in stationary Markov strategies
do exist. This is indeed the case when there are
finitely many states [Fink (9) and Takahashi
(10)] or in the model with infinitely many states
under some restrictions on the transitions [see,
e.g, Parthasarathy and Sinha (11) and Nowak
(12)]. However, in general, stationary Markov
equilibria might not exist [Simon (13), Levy
(14), and Levy and McLennan (15)].

The fact that a stationary equilibrium exists
has several implications. Stationary Markov
strategies are conceptually straightforward: past
play affects the players’ future behavior only
through the current state, that is, bygones are
bygones. Moreover, although a player may
have deviated from equilibrium behavior in the
past, thereby affecting past play, the deviation
does not affect the way players play in the
future. In fact, irrespective of past play, the
strategies induced in the continuation game
form an equilibrium of this continuation game;
that is, equilibrium behavior does not involve
noncredible threats, a property that is stronger
than equilibrium property, and viewed as
highly desirable [see Selten (16)].

Shapley assumed exogenously given positive
terminating probabilities. Shortly afterward,
in the series on game theory published by the
Princeton University Press in the 1950s, a
number of papers started investigating what
happens when this assumption is dropped.
Milnor and Shapley (17) studied “ruin games,”
in which two players, each endowed with some
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initial wealth, repeatedly play a zero-sum game
that affects their wealth, until one player is
ruined and declared loser. Everett (18) studied
the so-called “recursive games,” in which ter-
mination probabilities are endogenous, and a
payof is only received upon termination of the
game, as a function of the terminating state.
Gillette (19) introduced a deceptively simple-
looking game, inspired by playground prac-
tice, whose analysis resisted all attempts until
Blackwell and Ferguson (20) provided its
solution.

In a different but related framework,
Aumann, Maschler, and Stearns (ref. 21,
reprinted in 1995; see pp. 130-139) conceptu-
alized a notion of a uniform solution to
infinite-horizon games, in which payoffs are
received in each round. This approach views
the infinite-horizon game as an idealized
model for long-run interactions, in which the
duration of the game is sufficiently long and/or
the discount factor is sufficiently close to 1, and
both are not perfectly known. It aims at pro-
viding solutions whose optimality properties
are not too sensitive to the exact specification
of duration/discount factors. Such a (zero-sum)
game is said to have a “uniform value v’ if
(i) the values vy of the T-round game converge
to v as the duration T of the game increases to
infinity and (i) given any &> 0, each player
has a strategy which is g-optimal in all
T-round games, as soon as T is large enough.
The latter property implies that this strategy
is also approximately optimal in discounted
games, provided players are patient enough,
that is, the discount factor is sufficiently close
to 1. This notion of uniform e-optimality, al-
though giving up on exact optimality, captures
robust optimality requirements.

Bewley and Kohlberg (22) proved that, in
any stochastic game, the values vy converge as
the duration T increases. Mertens and
Neyman (23, 24) proved that stochastic games
(with a finite set of states and finite action
sets) have a uniform value. The e-optimal
strategy that Mertens and Neyman con-
structed is complex yet allows for a simple
intuition. At each round, the strategy updates
a fictitious discount factor and plays an op-
timal strategy for that fictitious parameter.
This parameter summarizes past play, and its
updating is based on past payofts. If payoffs
received so far are high, the player puts higher
weight on the future and increases his pa-
tience; that is, lets the fictitious discount factor
get closer to 1. When the total payoff that he
received so far is low, he should focus more
about short-term payoffs, and therefore de-
crease this fictitious discount factor. The
complexity of such a policy lies in the fine-
tuning of the updating rule, to avoid long-
term fluctuations. This construction hinges

on algebraic properties of the value of the
discounted game, as a function of the dis-
count factor, proven by Bewley and Kohlberg
(22). One can view the monetary policy of
the central bank, that of changing the interest
rate from time to time, as an implementation
of this type of strategy.

The theory of the non-zero-sum case has
flourished in the last two decades but has not
been settled yet. A collection of strategies, one
for each player, is a uniform e-equilibrium if
by deviating no player can profit more than &,
provided the game is sufficiently long or the
discount factor sufficiently close to 1, and if
the payoff vector is almost independent of the
duration of the game. Existence of uniform
e-equilibria has been established in few cases:
Vieille (25, 26) for two-player games, Solan
(27) for three-player games in which the state
of the game changes at most once, and Solan
and Vieille (28), Flesch et al. (29), and Simon
(30) in other classes of stochastic games. The
question in its most generality remains open.

A weaker concept than Nash equilibrium
is that of “correlated equilibrium,” introduced
by Aumann (31, 32). A collection of strate-
gies, one for each player, is a correlated
equilibrium if it is a Nash equilibrium in an
extended game that contains a correlation
device, which sends signals to the players
along the play. The correlation device may
send public or private signals, at the outset of
the game or at the beginning of every stage,
and the signals can be independent or cor-
related. Each of these variations gives rise to
another concept of correlated equilibrium.
Nowak and Raghavan (33) proved the exis-
tence of a correlated equilibrium in discounted
stochastic games, in which the strategies of the
players are stationary Markov and the signals
of the correlation device are public. Building
upon Mertens and Neyman (23), Solan and
Vieille (34) proved the existence of a corre-
lated uniform e-equilibrium in which the
correlation device sends a private message to
each player at every round, which is correlated
with the messages sent in the previous round.

Another strand of literature studies sto-
chastic games in continuous time, and their
relation to discrete-time approximations of the
game. It turns out that the correlated uniform
g-equilibrium of Solan and Vieille (34) can be
transformed into a Nash equilibrium in the
continuous-time game [see Neyman (35)].

In the zero-sum case, other evaluations have
attracted interest. Rather than viewing the
infinite-horizon game as a stylized model of
long-run interactions, one may instead assign
to each infinite play of the game a payoff,
which summarizes payoffs received along the
play. Player 1 (respectively, player 2) maxi-
mizes (respectively, minimizes) the expectation

Solan and Vieille

www.manaraa.com


www.pnas.org/cgi/doi/10.1073/pnas.1513508112

N
8
S
&
R
=
g
s
2
S
<
§
5
2
-4
5
3
8
s
2
2
&
2
<
-
-
z
<
s
&
&
3
3
€
g
L
<
H
3
a

of this payoff. When the payoft of a play is
defined to be the upper limit of the averages of
the stage payoffs received along the play, a
value was shown to exist when the state
space is general by Maitra and Sudderth
(36). Martin (37) proved a far-reaching re-
sult, establishing the existence of the value as
soon as the payoff function satisfies minimal
(measurability) requirements.

In the 1960s, commissioned by the United
States, Aumann, Maschler, and Stearns ini-
tiated and developed the theory of (two-
player, zero-sum) repeated games with in-
complete information. In such games, the
state is chosen at the outset of the game, kept
fixed throughout the play, and the two
players have imperfect and possibly asym-
metric knowledge of it. The main goal of the
analysis is to understand to what extent pri-
vately held information is valuable in the
long run, and how to make optimal use of it.
Although different from stochastic games in
some important dimensions, the two theories
were shown to share common features. After
some developments, not surveyed here [see
Zamir (38)], a general model of repeated/
stochastic games with signals was introduced
by Mertens (39). Such games have a finite
number of possible states, and the two play-
ers have a finite set of actions available in
each state. In addition, there are two finite
sets of “private signals” for the two players. In
each round, the current state and the actions
being played determine the probability dis-
tribution according to which the next state
of the game and the signals to be privately
provided to the two players are chosen. These
signals are all that the players get to know
along the play. This unified model is flexible
enough to include stochastic games; repeated
games with incomplete information, imper-
fect monitoring, or information lags [Scarf
and Shapley (40)]; and many other models,
such as game-theoretic versions of partially
observed Markov decision processes. It is
worth noting that the general model of re-
peated games is a stochastic game with im-
perfect monitoring of the state and actions.
The mathematical study of this general
model is currently very active [see Laraki and
Sorin (41) for a recent review of the topic].

Stochastic games provide a model for a large
variety of dynamic interactions and are there-
fore useful in modeling real-life situations that
arise in, e.g, economics, political science, and
operations research. So that the analysis of the
game provides decisive predictions and rec-
ommendations, the data that define it must
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have special features. Because applications are
usually motivated by the search for clear-cut
conclusions, only highly structured models of
stochastic games have been studied.

The significance of stochastic games is
threefold. First, by modeling a dynamic sit-
uation as a stochastic game, researchers must
understand the structure of the problem they
face. Second, to simplify the model, they
have to realize which aspects of the model do
not affect the outcome and can be dispensed
with. Third, the qualitative predictions of the
model sometimes provide useful conclu-
sions. We provide here two applications of
stochastic games.

One area that was extensively studied as a
stochastic game is the overexploitation of a
common resource, which goes back to Lloyd
(42). Levhari and Mirman (43) studied a
fishery war between two countries. The state
variable is the quantity of fish in a given area,
which grows exponentially in the absence of
unnatural intervention. Each one of two
countries has to determine the quantity of
fish it allows its fishermen to catch, so as to
maximize its long-run utility. The authors
concluded that, in equilibrium, the fish
population will be smaller than the pop-
ulation that would have resulted if the two
countries cooperated and maximized their
joint utility. The phenomenon of over-
exploitation of a common resource is known
in economics as the “tragedy of the com-
mons.” A complete characterization of the set
of equilibria in this model has been provided
by Chiarella et al. (44) and Dutta and Sun-
daram (45), who found out that there may be
equilibria in which the common resource is
underexploited, so that the tragedy of the
commons need not occur.

A second application of stochastic games is
that of market games with money. In a
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sequence of papers, Karatzas et al. (46, 47)
and Geanakoplos et al. (48) studied the origin
of inflation in a market game with continuum
of agents and a central bank. At every stage,
each player receives a random endowment of
a perishable commodity, decides how much to
lend to or to borrow from the central bank,
and consumes the amount that he has after
this transaction. The conclusion of the analysis
is that the mere presence of uncertainty in the
endowments leads to inflation.

Shapley’s work on stochastic games, which was
published 60 y ago, paved the way to a variety
of dynamic models of games that proved
fruitful in many areas and have been the
subject of an extremely rich and diverse re-
search in the last 50 y [see, e.g., Neyman and
Sorin (49) and Mertens, Sorin, and Zamir
(50)]. A hoard of new tools has been developed
to handle questions that were impenetrable in
Shapley’s time, new connections between game
theory and various topics in mathematics have
been established, and new areas of application
have developed, mostly in economics, com-
puter science, and operations research [see, e.g.,
Altman and Hordijk (51)].

Although our understanding of dynamic
situations has improved, the questions that
we can answer are still limited, and the
models that are analyzed are still very sty-
listic. New tools must be developed so that
we can treat models that are closer to real-
life situations and provide better predic-
tions. This is the challenge that faces us in
the coming 60 y.
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